
21st LACCEI International Multi-Conference for Engineering, Education, and Technology: “Leadership in Education and Innovation in Engineering in the Framework of Global

Transformations: Integration and Alliances for Integral Development”, Hybrid Event, Buenos Aires - ARGENTINA, July 17 - 21, 2023. 1

Deep Neural Network to Describe the Measurement

of the Higgs Production in the Full Leptonic Channel

via Vector Boson Fusion
Luis Sánchez1 , Félix Díaz 2 , and Jhonny Rojas3

1Universidad Tecnológica del Perú, Perú, jusa295@gmail.com
2Vicerrectorado de Investigación, Universidad Autónoma del Perú, Perú, felix.diaz@autonoma.pe

3Pontificia Universidad Católica del Perú, Perú, jrojash@pucp.edu.com

Abstract–

In this article, an analysis of the Higgs boson production via

vector boson fusion in the SM H→WW→ 2l2ν (l = e, μ) is

performed from an optimization technique in the event

selection, called DNN analysis. This analysis compares the

standard selection process that CERN performs to study the

production of a particle from a cut-based analysis, where the

study of statistical significance shows that DNN analysis can

better separate signal and background events. To perform the

DNN analysis, we optimized the neural network configuration

to discriminate signal and background events effectively.

Moreover, studies of activation functions such as RELU and

Sigmoid, stochastic optimization methods such as ADAM, and

regularization methods such as Dropout. All this leads to

constructing an optimal neural network topology capable of

learning events and signal and background discrimination.

Finally, we found an important improvement of approximately

47 % and 27 % for 𝑍𝑉𝐵𝐹 and 𝑍𝐻𝑖𝑔𝑔𝑠, respectively.

I. INTRODUCTION

In recent years, deep artificial neural networks (including

recurrent ones) have won numerous contests in pattern

recognition and machine learning [1]. Deep learning is making

major advances in solving problems that have resisted the best

attempts of the artificial intelligence community for many years

[2]. Deep learning techniques are applied in some fields'

Natural language processing, information retrieval, analysis of

social networks, transportation prediction and sound processing

[3]. A simple technique to extract the dark knowledge of a Deep

Multi-Column Deep Learning Network and its compression

into a shallow neural network (NN) causing not only the

improvement of the train and test performance of the latter but

a cheap way to approximate the former results but with fewer

parameters [4]. Single units in a deep neural network (DNN)

functionally correspond with neurons in the brain [5].

Multifaceted feature visualization can better understand deep

neural networks by identifying which features each of their

neurons have learned to detect [6]. Deep learning relies on

multiplier layers of nodes and many edges linking the nodes

forming input/output (I/O) layered grids representing a

multiscale processing network [7].

The Higgs model is a keystone of the Standard Model and its

supersymmetric extensions [8]. The Higgs is a massive and

unstable boson with an extremely short half-life estimated to be

about 1.56 × 10−22 seconds. Bosons are produced as part of the

proton scattering process and are detected through their decay

products. The collision of W or Z vector bosons can produce

the Higgs boson, this process is called vector boson fusion

(VBF) and it is represented as WWH and ZZH. Analogously

there are other Higgs production channels such as gluon

collisions, also by photon annihilation [9].

As the Higgs is created, it decays into a variety of particles,

including quarks, photons, electrons, and muons. To determine

if the Higgs boson exists, the energy and momentums of these

particles are measured by the ATLAS and CMS detectors in the

Large Hadron Collider (LHC) [10]. They use Monte Carlo

event simulation techniques [11], and statistical analysis such

as principal component and discriminant analysis to extract

significant features from the data and classify Higgs boson

decay events. In addition, artificial intelligence and machine

learning have been used to identify patterns and trends in

experimental data.

Under this context, machine learning optimization techniques

are used to change the weights of a neural network during the

time it's trained. Methods such as Stochastic Gradient Descent

(SGD), Root Mean Square Propagation (RMSprop),

ADADELTA, and Adaptive Gradient (ADAGRAD) are the

most used. The efficient training of neural networks in deep

learning depends on optimization methods or optimizers. Many

studies have compared different optimizers for training neural

models, showing that certain optimizers work better for specific

problems. The adaptive gradient descent optimization

technique ADAM, modifies the learning step sizes for each

parameter separately [12]. Stochastic Gradient Descent (SGD)

is a traditional gradient descent optimization technique that

modifies the network weights in accordance with the gradient

of the loss function's opposite direction [13]. In terms of

convergence and efficiency, ADAM can be more successful in

DNN training than SGD and is typically quicker than SGD [14].

Moreover, ADAM is more resilient in terms of choosing the

learning step size, necessitating less hyperparameter adjustment

than SGD. This allows simula

ISBN: 978-628-95207-4-3. ISSN: 2414-6390. Digital Object Identifier: 10.18687/LACCEI2023.1.1.1072

https://orcid.org/0000-0001-6968-236X
https://orcid.org/0000-0002-8232-058X
https://orcid.org/0000-0002-3643-3399

21st LACCEI International Multi-Conference for Engineering, Education, and Technology: “Leadership in Education and Innovation in Engineering in the Framework of Global

Transformations: Integration and Alliances for Integral Development”, Hybrid Event, Buenos Aires - ARGENTINA, July 17 - 21, 2023. 2

ted or actual users to interact with the model in real-time

ADAM is able to improve the performance of a wide and deep

neural network [15]. Then, ADAM, the most widely used

machine learning optimizer compare others, because it is faster

and more efficient, is an optimization method based on

stochastic functions using algorithms that properly combine the

weights and biases to minimize the loss, this combination

allows to calculate a learning rate (the network learns not to

over train and minimizes the loss).

The aim of this work is to measure the production of Higgs in

the full Leptonic Channel via Vector Boson Fusion taking data

from 2016. H 𝑊+𝑊− decay at a √𝑠 of 13 TeV utilizing a total

L's of 35.9 𝑓𝑏−1 gathered from proton-proton collisions at the

LHC base on the DNN.

II. THEORETICAL FRAMEWORK

The connections between the neurons are achieved by arranging

the neurons in layers. Typically, each layer receives inputs from

the preceding layer, with the first layer getting inputs from the

input layer. The input layer nodes serve as the Neural Network

(NN) variables. The final output of the NN is generated by the

last layer and is depicted in Figure 1.

Figure 1. Schematic depiction of a layered ANN (densely connected

feed forward network).

When designing a NN, one choice to be made is the connection

between the output of one layer and the input of the next layer,

as well as the internal structure of the layers. The most widely

used structure is the fully connected layer, where each neuron

receives the output of every node in the previous layer as input.

The latter leads to a straightforward mathematical description

of the NN: if 𝑥0 is the vector of input values, the output of the

following layer of neurons is represented by ℎ1 = 𝑓(𝑤0 ∙ 𝑥0 +
𝑏0). Here, the layer is identified as ℎ1. The layers between the

input and output layers are referred to as hidden layers. The

activation function of the neurons in this layer is represented by

𝑓. The weight matrix, 𝑤0, contains a vector of weights for each

neuron, and the bias vector, 𝑏 , holds a bias value for each

neuron. The output of the subsequent layer would be designated

as ℎ2 = 𝑓(𝑤1 ∙ 𝑥1 + 𝑏1). Therefore, a recursive mathematical

representation of the entire network is represented by,

ℎ𝑖+1 = 𝑓(𝑤𝑖 ∙ 𝑥𝑖 + 𝑏𝑖) (1)

where 𝑥𝑖 = ℎ𝑖 . The equation (1) applies to all feed-forward

networks, where there are no loops, and a neuron output does

not impact its input. In addition, there are various other layer

types, such as pooling layers, convolutional layers, and dropout

layers. However, only dropout layers, which serve as a

regularization technique, are utilized and addressed in this study

context [16].

A. Activation Functions

The selection of the activation function for the neurons in a

neural network is a crucial aspect of its design. This decision

holds especially significant weight when considering the output

layer, as the activation function of this layer sets the limits of

the possible values the output can take. It defines the shape of

the network output with respect to its inputs. In this section, we

will examine and discuss some of the most frequently used

activation functions.

The Rectified Linear Units (RELU) are the most commonly

used activation functions, as seen in Figure 2 (right). They are

defined as 𝑓(𝑧) = (0, 𝑧) , meaning that the output of a RELU

neuron is equal to the weighted input of the neuron, 𝑤𝑖[𝑗] ∙ ℎ𝑖,

if it is greater than a threshold of −𝑏𝑖[𝑗], or zero otherwise.

Figure 2. Sigmoid and RELU activation functions.

One advantage of using RELU units is their ease of

computation. However, there is a downside in that they can

"die," meaning if their output becomes zero, it is possible that

the training algorithm of the neural network will not find a

weight update that brings the output back to a non-zero value.

The latter is because most algorithms rely on gradient descent,

and the gradient for negative values of 𝑤𝑖[𝑗] ∙ ℎ𝑖 + 𝑏𝑖[𝑗] is

simply zero.

Neurons with step function activation, known as perceptrons,

played a crucial role in the evolution of neural networks. They

were used to construct logical functions such as AND, OR, and

NAND, which are the fundamental building blocks for all other

functions in a computer.

Sigmoid units represent a more generalized form of perceptrons

capable of producing a non-binary output. The sigmoid function

is defined as 𝜎(𝑧) = (1 + 𝑒−𝑧)−1, as seen in Figure 2 (left),

21st LACCEI International Multi-Conference for Engineering, Education, and Technology: “Leadership in Education and Innovation in Engineering in the Framework of Global

Transformations: Integration and Alliances for Integral Development”, Hybrid Event, Buenos Aires - ARGENTINA, July 17 - 21, 2023. 3

with 𝑧 being represented in the same manner as the RELU

units.

The sigmoid function can map its inputs to a range of values

between 0 and 1, making it useful for binary classification tasks

in the output layer of a neural network. Its continuous nature

also allows for efficient gradient calculations during training

compared to non-differentiable functions like the step function.

However, as with the RELU function, the sigmoid can suffer

from small gradients for extremely high or low input values,

causing neurons to become unresponsive to weight changes in

the network. RELU is used in the input to address this, and

hidden layers of the neural network are RELU. In contrast, a

sigmoid function is used in the output layer to ensure that the

sum of all outputs is one and that individual outputs fall within

the [0,1] range.

B. Training of a neural network

When training a neural network, the fundamental approach is to

compare its output on a given training input to a known target

output. This comparison allows the modification of the weights,

biases, and other trainable parameters of the neurons to enhance

the alignment between the computed and target output. As such,

the trainable parameters are typically initialized randomly at the

start of the training process.

One common approach for weight initialization is to randomly

sample values from a Gaussian distribution centered at zero

with a standard deviation of one. However, there exist various

other methods for weight initialization. An alternative approach

is to initialize weights from a Normal distribution, where most

values are clustered around the mean (e.g., 𝜇 ≈ 0). Another

option is to use a Uniform distribution, where each value has an

equal probability of being selected. In this analysis, both normal

and uniform initialization techniques were employed. These

methods can enhance the convergence behavior of the network

during training, ultimately reducing the time required to train

the network model.

Once the weights are initialized, a loss function is computed to

measure the discrepancy between the predicted output and the

desired output. Subsequently, a gradient-based algorithm is

typically employed to minimize this loss, improving the

agreement between the neural network output and the training

data. For classification tasks with an output node for each class,

the cross-entropy function (S) is commonly utilized. This

function is defined as follows:

𝑆 = −
1

ℎ
∑𝑥 ∑𝑦 [𝑦𝑗 ∙𝑙𝑛 𝑙𝑛 (𝑧𝑗) + (1 − 𝑦𝑗) ∙𝑙𝑛 (1 − 𝑧𝑗)]

(2)

In this equation, the 𝑧𝑖 represents the outputs of the distinct

output neurons responsible for classifying the input, while 𝑦𝑖

represents the desired output neuron values.

The minimization algorithm proceeds by iteratively adjusting

the weights and biases in order to minimize the loss. One of the

most straightforward algorithms used for this purpose is

gradient descent, which involves calculating the derivative of

the loss function with respect to the weight and bias parameters

and adjusting them in the direction of the descending gradient

with a variable step size. This step size is commonly referred to

as the learning rate, and it is a tunable parameter in the network

architecture. Typically, the learning rate is gradually reduced

over time as the minimum is approached, a technique known as

learning rate decay.

A technique that was attempted is called ADAM (Adaptive

Moment Estimation), which is discussed in [17]. This algorithm

is utilized for first-order gradient-based optimization of

stochastic objective functions and is based on adaptive

estimates of lower-order moments. Other commonly used

algorithms include basic SGD, RMSprop, ADADELTA, and

ADAGRAD.

C. Regularization

Overtraining is a common issue that may arise during the

training of a neural network. The latter means that the network

may learn patterns within the training data that are purely

statistical and do not exist in the broader data set that the

network is intended to describe. With the purpose of mitigating

this effect, a portion of the training data is typically reserved for

testing the network's performance on an independent data set.

In contrast, the network is being trained on the remaining data.

When the loss function of the training data becomes smaller

than that of the test data, the neural network begins to prioritize

the statistical artifacts present in the training data. The latter is

likely to occur over time, particularly when the network has

learned most of the relevant features within the data or when

there is inadequate training data, given the number of trainable

parameters. Therefore, to treat the problem of overtraining, one

possible approach is regularization, which includes commonly

used techniques such as dropout layers.

The first technique involves extending the loss function by

adding a penalty term of −
1

2
𝜆𝜔2, which is the squared sum of

all weights and biases in the network multiplied by the strength

of the regularization. This approach penalizes large individual

weights within the network, which may indicate the over-

reliance on a single input in certain network parts. Therefore,

by doing so, it encourages the network to consider the broader

patterns in the data rather than focusing solely on the

distribution and fluctuations of a single input parameter.

The concept of dropout layers [18] represents a distinct

approach to network averaging. In a dropout layer, nodes within

the associated layer are randomly deactivated, temporarily

removing them from the network as depicted in Fig. 3. In this

21st LACCEI International Multi-Conference for Engineering, Education, and Technology: “Leadership in Education and Innovation in Engineering in the Framework of Global

Transformations: Integration and Alliances for Integral Development”, Hybrid Event, Buenos Aires - ARGENTINA, July 17 - 21, 2023. 4

way, a different sub-network of the original network is trained

in each iteration, effectively training multiple networks with

shared neurons simultaneously. This approach has been

demonstrated to prevent overtraining and enhance the network's

performance.

Figure 3. Dropout neural net model: A standard NN, from bottom to

top, with 2 hidden layers as an example of a thinned net produced by

applying dropout to the network on the left.

II. METHODOLOGY

This analysis primarily focuses on utilizing Deep Neural

Networks (DNNs) to discriminate VBF signals from main

backgrounds. The general functioning of DNNs has been

explained earlier. This section provides an initial exploration of

using DNNs in the VBF analysis. The knowledge and insights

gained from these initial DNN tests are then used to construct

an NN selector, which can effectively differentiate between

signal and background. The applicability of this classifier for

signal and background discrimination is then discussed. The

DNNs were constructed using KERAS [19] with THEANO

[20] and TensorFlow [21] backends. The data and MC samples

employed here are the same as those used in the related VBF

analysis, but the present work is limited to the full leptonic

decay channel.

A. Analysis strategy

Many discrimination methods begin by defining kinematic

observables and analyzing their distributions. A specialized

algorithm is then employed to identify the most effective

discriminatory variables. These variables serve as inputs for

various discrimination techniques, whose efficacy is evaluated

based on the values of the configuration parameters.

In the HWW VBF analysis, it is necessary to discriminate

between several backgrounds and the signal. The primary

backgrounds include the DY, WW, and TOP processes, with

the ggH process also considered a background. The DNNs were

evaluated individually for each background to consider their

distinct differences from the signal. However, the optimal

performance was achieved when all backgrounds were

considered together.

The DNN strategy is devised to attain high efficacy in

background suppression. The methodology created can be

categorized into the subsequent steps:

1) Specify a preliminary group of low-level variables to serve

as inputs for the DNN.

2) Define the dataset for both signal and background events.

3) Train, validate, and test the DNN using previously defined

data sets. It is important to mention that during DNN training,

the efficacy and stability of the DNN rely on the values of the

tuning parameters, primarily selected through a cross-

validation technique to prevent overfitting.

4) The efficacy of the DNN is evaluated using classifier

methods like the receiver operating characteristic (ROC)

curves, which showcase the diagnostic ability of a binary

classifier system while varying the discrimination threshold.

The Area under the ROC curve (AUC) serves as a degree or

metric of separability. It indicates the extent to which the model

can differentiate between classes. A higher AUC signifies that

the model is more proficient in accurately predicting 0s as 0s

and 1s as 1s. It is important to mention that we use the AUC

due to the small amount of data.

In this analysis, the approach does not involve constructing

high-level variables (which are created with previous

discrimination). Instead, variables corresponding to the final

state objects 𝑝𝑇 , 𝜂 , and 𝜙 for leptons and jets-containing all

pertinent information of the final state are utilized, as indicated

in Table 1. The superscript represents the final state, 𝑙1 is the

first lepton, 𝑙2 is the second lepton, 𝑗1 is the jet due to the

defragmentation of the first quark packet, and 𝑗2 is the jet due

to the defragmentation of the second quark packet

Table 1. Kinematic variables used as DNN inputs

Variables Description

𝑝𝑇
𝑙1 , 𝜂𝑙1 , 𝜙𝑙1 Leading lepton 𝑝𝑇 , 𝜂, and 𝜙

𝑝𝑇
𝑙2 , 𝜂𝑙2 , 𝜙𝑙2 Trailing lepton 𝑝𝑇 , 𝜂, and

𝑝𝑇
𝑗1 , 𝜂𝑗1 , 𝜙𝑗1 Leading jet 𝑝𝑇 , 𝜂, and 𝜙

𝑝𝑇
𝑗2 , 𝜂𝑗2 , 𝜙𝑗2 Trailing jet 𝑝𝑇 , 𝜂, and

For the purpose of training deep neural networks, the dataset is

selected by applying all cuts that define the signal region,

except for the high-level cuts: |∆𝜂𝑗𝑗| > 3.5 and |𝜂𝑙𝑖 − (𝜂𝑗1 +

𝜂𝑗2)/2|/|∆𝜂𝑗𝑗| < 0.5. Tables 2 and 3 display this dataset and

its division for each 𝑚𝑗𝑗 region. Therefore, signal samples are

utilized for other Higgs masses to enhance the statistics of

signal events while maintaining an appropriate balance between

signal and background events.

21st LACCEI International Multi-Conference for Engineering, Education, and Technology: “Leadership in Education and Innovation in Engineering in the Framework of Global

Transformations: Integration and Alliances for Integral Development”, Hybrid Event, Buenos Aires - ARGENTINA, July 17 - 21, 2023. 5

Process 2016 low 𝑚𝑗𝑗 2016 high 𝑚𝑗𝑗

qqH (𝑚𝐻 = 125 GeV) 1.2 K 2.7 K

qqH (other masses) 2.6 K 2.7 K

ggH (𝑚𝐻 = 125 GeV) 0.1 K 0.1 K

WW 0.4 K 0.2 K

DY 0.4 K 0.2 K

TOP 4.5 K 2.1 K

𝛴 Signal 3.7 K 5.4 K

𝛴 Background 5.4 K 2.6 K

Table 2. Number of events used in DNN for each sample and dataset

split.

Training Testing Validation

90 % 10 % 20 % train

80 % 20 % 20 % train

75 % 25 % 20 % train

70 % 30 % 20 % train

60 % 40 % 20 % train

50 % 50 % 20 % train
Table 3. Dataset split used in DNN for each sample.

B. Neural network building

Keras, a Python library for developing and evaluating deep

learning models, is known for its powerful yet user-friendly

features. It leverages the efficient numerical computation

libraries Theano and TensorFlow, enabling you to define and

train neural network models with just a few lines of code. The

following steps are involved in this process.

Load data

When working with machine learning algorithms that rely on

stochastic processes, such as random numbers, it is advisable to

set the random number seed. The latter ensures that the same

code can be executed multiple times and produce identical

results. Therefore, this is particularly helpful for demonstrating

results or comparing algorithms using the same randomness

source.

Moreover, to facilitate the use of the dataset described in Table

9, which includes a set of variables per event related to binary

classification, signal events should be defined as 1 and

background as 0. Consequently, this allows for direct use with

neural networks, which require numeric input and output

values. In addition, data can be loaded directly using the

NumPy tool, a Python extension that provides extensive support

for working with vectors and arrays. The dataset consists of 12

input variables (selected from Table 1) and one output variable

(the last column), the class variable.

After loading, the dataset can be divided into input variables

(X) and output class variables (Y). The random number

generator should be initialized to ensure the reproducibility of

the results. With the data loaded and the random number

generator initialized, the next step is to define the neural

network model.

Define model

In Keras, models are constructed as a sequence of layers; each

added one at a time until the desired network topology is

achieved. A fully connected multi-layer network structure is

utilized for the analysis at hand. It includes an input layer with

12 neurons corresponding to the 12 variables, one or more inner

layers with a large number of neurons, and an output layer with

1 neuron to predict the signal or background class.

To initialize the network weights, a small random number is

generated from either a uniform or Gaussian distribution,

depending on the layer. A uniform distribution is used for the

output layer to generate random weights between 0 and 0.05, a

standard uniform weight initialization in Keras. A "normal"

distribution is used for all other layers to generate small random

numbers from a Gaussian distribution.

Therefore, a sequential model is created to implement the latter,

and the layers are added using appropriate initialization

methods and activation functions. It allows for greater control

over the network topology and can improve the accuracy of the

final model.

Compile model

After defining the model, the next step is to compile it. Then,

Keras utilizes efficient numerical libraries (also known as the

"backend"), such as Theano or TensorFlow, to represent the

network for training and prediction. The backend automatically

chooses the best way to run the network on hardware, including

CPU or GPU, and can even distribute computation across

multiple devices.

During compilation, we must specify additional properties

necessary to train the network and find the best weights to

predict this problem. It includes specifying the loss function

used to evaluate a set of weights, the optimizer used to search

for different weights, and any optional metrics we want to

collect and report during training.

In this analysis, we will use binary cross-entropy, the

logarithmic loss function defined in Keras, for binary

classification problems. We will also use the efficient ADAM

gradient descent algorithm as the optimizer. These choices can

significantly impact the performance of the model, and

21st LACCEI International Multi-Conference for Engineering, Education, and Technology: “Leadership in Education and Innovation in Engineering in the Framework of Global

Transformations: Integration and Alliances for Integral Development”, Hybrid Event, Buenos Aires - ARGENTINA, July 17 - 21, 2023. 6

selecting appropriate loss functions and optimizers is an

essential part of building an effective neural network.

Fit model

To train our loaded model, we can call the fit function. The

training process involves iterating through the data set for a

fixed number of epochs, each comprising several weight

updates based on a batch of instances. The batch size refers to

the cases evaluated before each weight update. In this analysis,

we experimented with different values for the number of

iterations and the batch size, ultimately choosing around 400-

1000 iterations and batch sizes of 10 and 50 for low and high

𝑚𝑗𝑗, respectively. These values were selected through a process

of trial and error.

Evaluate the model

To accurately evaluate the model's performance, it is ideal to

separate the dataset into training, testing, and evaluation sets.

However, for simplicity, we trained the NN on the entire dataset

and evaluated its performance on the same dataset. While this

approach gives us an idea of the model's accuracy, we must

determine how well the algorithm can perform on new data. To

evaluate the model's performance on the training dataset, we

used the evaluation function in the model, passing the same

input and output used to train the model. Thus, it generated a

prediction for each pair of input and output and collected scores,

including the average loss and any metrics set, such as accuracy.

We separated 80 % of the events for training and 20 % for

testing, with 20 % of the training set used for validation, as

selected from Table 4.

Parameter Test values

Hidden layers 1, 2, 3, 4, 5, 6

Nodes per layer 4, 24, 48, 72, 96, 120, 240, 10 K

Batch size 5, 10, 20, 50

Epochs 200, 400, 1 K, 2 K, 5 K

Dropout per layer 10 %, 15 %, 20 %, 25 %

Table 4. Configurations for the DNN optimization.

III. RESULTS

Fine-tuning the parameters has maximized the network's

performance, which was measured using the AUC metric on the

validation dataset. However, we had to make many decisions

when designing and configuring the DNN models. We

empirically resolved most of these decisions by testing them on

real data through trial and error. Therefore, it's crucial to have a

robust evaluation method to measure the performance of DNN

models.

We trained the NNs until the accuracy on the training and

validation datasets stopped increasing, which prevented

overfitting and maximized the achievable classification

performance. Figure 4 and Figure 5 present a robust method for

evaluating the performance of DNN models, considering a good

analysis strategy and correct construction method. Figure 4 and

Figure 5 compare the model accuracy and loss for each epoch

in the training and validation sets of the best DNN

configurations in low and high regions.

Figure 4. Model accuracy and loss for low 𝑚𝑗𝑗 regions. Training and

validation along training epochs for best DNN configurations.

Figure 5. Model accuracy and loss for high 𝑚𝑗𝑗 regions. Training and

validation along training epochs for best DNN configurations.

Usually, increasing the amount of training leads to higher

accuracy. However, this is not always the case, and in some

situations, it may be beneficial to terminate training early. The

model may only fit the training and test datasets if sufficient

training exists. Conversely, excessive training can overfit the

training data and result in poor performance on the test set.

21st LACCEI International Multi-Conference for Engineering, Education, and Technology: “Leadership in Education and Innovation in Engineering in the Framework of Global

Transformations: Integration and Alliances for Integral Development”, Hybrid Event, Buenos Aires - ARGENTINA, July 17 - 21, 2023. 7

Therefore, to mitigate this issue, we utilized the following

regularization techniques:

● Early stopping: Stop training when the performance on

a validation dataset begins to deteriorate.

● Dropout: Remove inputs during training in a

probabilistic manner.

To maximize the separation of background and signal events, a

number between 0 and 1, called score, is the output of a binary

classifier neural network. Figure 6 and Figure 7 shows the score

distributions for the signal and background samples of both

NNs, and the DNN discriminator demonstrates a good

separation ability between the two classes.

Figure 6. Score distribution for low 𝑚𝑗𝑗 regions. DNN discrimination

for training and testing datasets for best DNN configurations. The

horizontal and vertical axes represent the new discrimination variable

(DNNvar) and the number of events, respectively.

Figure 7. Score distribution for high 𝑚𝑗𝑗 regions. DNN discrimination

for training and testing datasets for best DNN configurations. The

horizontal and vertical axes represent the new discrimination variable

(DNNvar) and the number of events, respectively.

Figure 8 and Figure 9 display the ROC curves, which illustrate

the performance of the DNN discriminator for the signal and

background samples. The AUC, a measure of classification

accuracy, ranges from 82 % to 98 % for the low and high MJJ

regions, indicating that our models efficiently discriminate

between the signal and background by improving signal

efficiency and background rejection.

Figure 8. DNN performances for low 𝑚𝑗𝑗 regions. ROC curve for

training and testing datasets for best DNN configurations.

Figure 9. DNN performances for low 𝑚𝑗𝑗 regions. ROC curve for

training and testing datasets for best DNN configurations.

We added a discriminant variable, DNNvar, to the trees of all

the samples in this analysis. It is possible to utilize the shape of

21st LACCEI International Multi-Conference for Engineering, Education, and Technology: “Leadership in Education and Innovation in Engineering in the Framework of Global

Transformations: Integration and Alliances for Integral Development”, Hybrid Event, Buenos Aires - ARGENTINA, July 17 - 21, 2023. 8

this variable for constructing a likelihood fit to extract the

expected signal significance within the statistical analysis. The

latter is known as the shape-based analysis of this variable,

consisting of 10 bins ranging from 0 to 1, as shown in Figure

10 and Figure 11. This variable is the most effective in

discriminating the background from the signal.

Figure 10. DNN variable for low 𝑚𝑗𝑗 regions after all the selections of

the 2 jets VBF analysis with 2016 data.

Figure 11. DNN variable for high 𝑚𝑗𝑗 regions after all the selections

of the 2 jets VBF analysis with 2016 data.

In the VBF analysis using DNN, we combined the expected

significance (𝑍) measurement for the low and high 𝑚𝑗𝑗 regions

without the 𝛥𝜂𝑗𝑗 cut: 𝑍𝑉𝐵𝐹 = 2.2 𝜎 and 𝑍𝐻𝑖𝑔𝑔𝑠 = 2.8 𝜎.

The latter is a crucial result compared to the CMS experiment

results [22] that study only the cuts analysis, a standard

selection process, whose results are less significant, using 𝛥𝜂𝑗𝑗

cut: VBF analysis without DNN: 𝑍𝑉𝐵𝐹 = 1.5 𝜎 and 𝑍𝐻𝑖𝑔𝑔𝑠 =

 2.2𝜎 .

The main reason for developing a deep neural network is to

effectively suppress the background in measuring VBF Higgs

production in the full leptonic channel. Developing an

algorithm to construct a signal and background discriminant

accomplished this task. We trained a set of simulated signal and

background events to identify kinematic differences between

the two processes. Therefore, we design each event to be more

or less compatible with the signal or background topology. In

this way, it is possible to improve the discrimination between

signal and background with the purpose of background

rejection and that the signal efficiency is both high and uniform

for the signal process studied.

Using the tool, we combined the two studied subcategories (low

and high 𝑚𝑗𝑗) and extracted the results while considering all the

correlations among the phase spaces. We turn the integrated

data card into a RooFit workspace that implements a physics

model defining the parameters of interest. We used the same

combined data card to create different workspaces based on

various physics interpretations of the results. Both signals in the

two categories are scaled and used to quote the overall

significance of the analysis. Using the Profile-Likelihood

algorithm of the combined tool, they obtained the signal

significance of both subcategories by fitting each subcategory

at a time.

IV. CONCLUSIONS

We successfully trained a neural network to separate the main

backgrounds from the VBF signal. We also extracted the

expected signal significance by conducting a statistical analysis

of the yields.

Moreover, the expected significance obtained with a cut-based

analysis has been 1.4𝜎 and 2.0𝜎 for the VBF and Higgs signal,

respectively.

Finally, we performed a more robust statistical analysis with a

likelihood fit on the shape of the DNN classifier score,

obtaining a result of 2.2𝜎 and 2.8𝜎 for the VBF and Higgs

signal, respectively.

REFERENCES

[1] Schmidhuber, J. (2015). Deep Learning In Neural Networks: An Overview.

Neural Networks, 61, 85-117.

[2] LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature,
521(7553), 436-444.

[3] N. Praveena and K. Vivekanandan, "A Review on Deep Neural Network
Design and Their Applications," 2021 7th International Conference on

Advanced Computing and Communication Systems (ICACCS), Coimbatore,

India, 2021, pp. 1495-1501, doi: 10.1109/ICACCS51430.2021.9441826.

21st LACCEI International Multi-Conference for Engineering, Education, and Technology: “Leadership in Education and Innovation in Engineering in the Framework of Global

Transformations: Integration and Alliances for Integral Development”, Hybrid Event, Buenos Aires - ARGENTINA, July 17 - 21, 2023. 9

[4] M. Carvalho and M. Pratama, "Improving shallow neural network by
compressing deep neural network," 2018 IEEE Symposium Series on

Computational Intelligence (SSCI), Bangalore, India, 2018, pp. 1382-1387, doi:

10.1109/SSCI.2018.8628686.

[5] Arend, L., Han, Y., Schrimpf, M., Bashivan, P., Kar, K., Poggio, T.A.,

DiCarlo, J.J., & Boix, X. (2018). Single units in a deep neural network
functionally correspond with neurons in the brain: preliminary results.

[6] Nguyen, A.M., Yosinski, J., & Clune, J. (2016). Multifaceted Feature
Visualization: Uncovering the Different Types of Features Learned By Each

Neuron in Deep Neural Networks. ArXiv, abs/1602.03616.

[7] Dinov, I.D. (2018). Deep Learning, Neural Networks. In: Data Science and

Predictive Analytics. Springer, Cham. https://doi.org/10.1007/978-3-319-

72347-1_23
[8] Duca, V.D. (2003). Higgs Production at LHC.

[9] ATLAS collaboration. (2018). Measurements of gluon-gluon fusion and
vector-boson fusion Higgs boson production cross-sections in the $ H\to

WW^{\ast}\to e\nu\mu\nu $ decay channel in $ pp $ collisions at $\sqrt {s}=

13$ TeV with the ATLAS detector. arXiv preprint arXiv:1808.09054.

[10] Spira, M. (2017). Higgs boson production and decay at hadron colliders.

Progress in Particle and Nuclear Physics, 95, 98-159.

[11] Aad, Georges et al. “Search for a Charged Higgs Boson Produced in
the Vector-Boson Fusion Mode with Decay H(±)→W(±)Z using pp
Collisions at √s=8  TeV with the ATLAS Experiment.” Physical review
letters 114 23 (2015): 231801 .

[12] Wang, Y., Kang, Y., Qin, C., Wang, H., Xu, Y., Zhang, Y., & Fu, Y.

(2021). Adapting stepsizes by momentumized gradients improves optimization

and generalization.

[13] Chaudhari, P., Choromanska, A., Soatto, S., LeCun, Y., Baldassi, C.,

Borgs, C., ... & Zecchina, R. (2019). Entropy-sgd: Biasing gradient descent into

wide valleys. Journal of Statistical Mechanics: Theory and Experiment,

2019(12), 124018.

[14] Keskar, N. S., & Socher, R. (2017). Improving generalization performance

by switching from adam to sgd. arXiv preprint arXiv:1712.07628.

[15] Nanni, L., Maguolo, G., & Lumini, A. (2021). Exploiting Adam-like

Optimization Algorithms to Improve the Performance of Convolutional Neural
Networks. ArXiv, abs/2103.14689.

[16] N. Srivastava, ET AL., “Dropout: A Simple Way to Prevent Neural
Networks from Overfitting”, Journal of Machine Learning Research15 (2014)

1929-1958. http://jmlr.org/papers/ v15/srivastava14a.html.

[17] D. Kingma and J. Ba, ”Adam: A Method for Stochastic Optimization”,

2014. http://adsabs.harvard.edu/abs/2014arXiv1412.6980K, arXiv:1412.6980.

[18] N. Srivastava, ET AL., ”Dropout: A Simple Way to Prevent Neural

Networks from Overfitting”, Journal of Machine Learning Research15 (2014)

1929-1958. http://jmlr.org/papers/v15/srivastava14a.html.

[19] C. Franc o̧is, ”keras”, GitHub repository, 2015.

https://github.com/fchollet/keras.

[20] The Theano Development Team, ET AL., ”Theano: A Python framework

for fast computation of mathematical expressions”, ArXiv e-prints (2016).
http://adsabs.harvard.edu/abs/2016arXiv160502688T,

https://arxiv.org/abs/1605.02688.

[21] A. Abadi, ET AL., ”TensorFlow: Large-Scale Machine Learning on
Heterogeneous Systems”, Software available from tensorflow.org, 2015.

https://www.tensorflow.org/.

[22] CMS Collaboration., CMS Physics Analysis Summary, “Higgs to

WWmeasurements with 15.2 fb−1 of 13 TeV proton-proton collisions”

https://cds.cern.ch/record/2273908/files/HIG-16-021-pas.pdf

https://doi.org/10.1007/978-3-319-72347-1_23
https://doi.org/10.1007/978-3-319-72347-1_23
http://jmlr.org/papers/v15/srivastava14a.html
https://github.com/fchollet/keras
http://adsabs.harvard.edu/abs/2016arXiv160502688T
https://arxiv.org/abs/1605.02688
https://www.tensorflow.org/
https://cds.cern.ch/record/2273908/files/HIG-16-021-pas.pdf

