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I.  INTRODUCTION

The  increasing  number  of  wireless  devices  requiring
higher  data  rates  has  propitiated  a  higher  demand  of
broadband wireless spectrum. This has limited the availability
of spectral resources where spectrum allocation policy remains
static. To this end, CR systems introduces dynamic spectrum
allocation  by exploiting the  available  frequency bands,  also
known as  spectrum holes  or white  spaces  [1],  [2].  In  these
systems, licensed or primary users (PU) and unlicensed users
or secondary users (SU) coexist over the same spectrum. In
this regard, spectrum sensing plays a key role by detecting the
spectrum occupancy  of  the  PUs,  so  that  detected  holes  are
filled with transmissions from SUs [2]. 

Numerous  spectrum  sensing  algorithms  have  been
reported in the literature. Particularly, the vast majority of test
statistics  are  obtained  from  the  sample  covariance  matrix,
where eigenvalues  are probably the features  most employed
for  these  statistical  tests.  Unlike  energy-based  or  matched
filter detectors [3], they do not require prior knowledge about
the  PU  (e.g.,  noise  power)  or  synchronization  with  the
sampled  signals.  Nevertheless,  inaccuracies  about  signal  or
noise  distribution,  as  well  as  assumed  prior  knowledge
regarding  the  mathematical  formulation  of  the  underlying
environment may lead to poor performance, when it does not 

represent the underlying CR scenario, for which several efforts
have been carried out to validate these approaches [4], [5], [6].

Recently,  DNN  has  been  employed  in  numerous
applications  in  the  field  of  wireless  communications,  and
naturally its success in tasks of classification has motivated its
study for spectrum sensing. The reported supervised learning
approaches requires  of  labeled data for training purposes  to
meet the required detection performance [7], [8], [9].

However,  it  is  not  suitable  for  practical  CR scenarios,
where  the  actual  state  of  the  PUs  is  not  unknown,  thus
requiring  a  cooperation  between  PU  and  SUs.  To  address
these  issues,  unsupervised  learning  techniques  have  been
employed and reported in the literature [10], [11], [12]. These
approaches  do  not  require  prior  information,  assumptions
about  the  modeling  of  CR networks,  or  the  availability  of
labeled  data.  Instead,  there  is  need  for  validating  these
approaches in more real scenarios that allow its integration in
existing and future wireless communication systems.

Software defined radio (SDR) platforms have shown to be
an  ideal  vehicle  to  corroborate  the  feasibility  of  CR
approaches  [13],  [14].  In  this  paper,  an  ULSS detection  is
assessed  through  experimental  evaluations.  This  scheme
employs the eigenvalues extracted from the sample covariance
matrix  of  the  received  signal,  and  it  is  composed  of  two
stages: a training stage and a real-time detection. During the
training,  a  Gaussian mixture model  (GMM) is  used for  the
clustering of the collected eigenvalues in order to obtain a set
of labeled data, after which it is utilized for training a DNN.
Eventually, this DNN is used for real-time detection. Unlike
[11],  [10],  eigenvalues  features  are  considered  for  the
detection and evaluation through experimental measurements.
The  preliminary  results  show  that  it  obtains  a  close
performance  to  that  of  an  optimal  Newman  Pearson  (NP)
detector  [15].  Moreover,  it  overcomes  eigenvalue-based
detectors  commonly  reported  in  the  literature.  Finally,  it
suggests the feasibility of unsupervised approaches motivating
further research in this direction.

The rest of the paper is organized as follows: in Section
II, the system model is presented. Next, model-based detectors
and  the  examined  unsupervised  detection  scheme  are
described in Section III and IV, respectively.  The employed
SDR platform is exposed in Section V, while the experimental
results  along  with  discussions  are  depicted  in  Section  VI.
Finally, the conclusions and future guidelines are presented in
Section VII.
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II.  SYSTEM MODEL

Spectrum sensing can be formulated as a hypothesis test,
where under a null hypothesis H0, it indicates the absence of
the PU over a frequency channel, whereas under an alternative
hypothesis H1, it points out that a PU is transmitting. Under
these assumptions, the model of the received signal, y[n] ∈ C,
at a SU can be expressed as follows:

H0 : y [n ]=w [n ] (1)

H1: y [n ]=h [n ] s [n ]+w [n ] (2)
where  n denotes  the sampling instant,  while  h[n],  s[n],  and
w[n] represent the channel gain, the transmitted signal, and the
additive  white  Gaussian  noise  (AWGN),  respectively.  The
decision between the H0 and H1 hypotheses, is often evaluated
using the probabilities of detection PD and false alarm PF A.
PD is the probability of deciding that a PU is present when it
is  true,  i.e.,  p(H1|H1),  while  PFA refers  to  the  probability  of
reporting that a PU is present when it is indeed absent, p(H1|
H0).

In the next sections, we describe the examined detectors.
Two of them based on presumed models, i.e., the ratio of the
arithmetic to geometric mean (AGM) of the eigenvalues [16],
and  an  Hadamard  detector  [17],  after  which  the  ULSS
detection is introduced.

III.  MODEL-BASED DETECTORS

For  a  given  SU,  the  receiver  signal  at  the  baseband is
stacked depicted in Fig 1, where it can be observed that it is
comprised of two main components during a training stage,
i.e., GMM & expectation maximization (EM) algorithms, as
well  as  a  DNN.  in  an  observation  matrix.  In  doing so,  the
received samples are split into M vectors of length Ns, so that
each of them are stacked in a M × N matrix as follows,

Y=[
y1 [1 ] y1 [2 ] y1 [3 ] ⋯ y1 [N s ]

⋮ ⋱ ⋮
yM [1 ] yM [2 ] yM [3 ] ⋯ yM [N s ] ] (3)

Then, a sample covariance matrix is computed as,

R=
1
N s

Y Y H
(4)

It is worth mentioning that in the absence of a PU, i.e.,
under a H0, the received samples are uncorrelated regardless
the fading channel model,  and the diagonal elements of the
sample covariance matrix R tend to the noise variance, while
the  non-diagonal  elements  are  approximately  zero,  as  the
number  of  samples  Ns  increases.  In  other  words,

R≈diag {σ1
2 ,…,σM

2 },  with  σ k
2 the noise variance  of  each

row vector. On the other hand, the presence of a PU induces

some correlation and/or additional spatial structure in the  R
matrix.

It  has  motivated  the  formulation  of  several  hypothesis
testing problems based on the structure of a covariance matrix
under different assumptions. Moreover, the likelihood depends
on  unknown  parameters,  and  the  most  typical  approach  to
solve this kind of testing problems is the Gaussian likelihood
ratio test (GLRT) [15]. In this regard, under an unknown noise
variance, if we consider it to be independent and identically
distributed (iid),  the sample noise  covariance  R≈ I σ 2,  and
consequently an AGM detector can be obtained as follows,

T AGM=

1
M

∑
k=1

M

λk

(∏
k=1

M

λk )
1
M

(5)

where  λk refers to the  k-th eigenvalue of  R. However,  note

that this case assumes the same noise variance  σ 2 along the

diagonal  of  R,  which  is  hard  to  achieve  with  real
measurements.  A  more  generic  diagonal  noise  covariance
matrix under H0 can take into account the uncertainties in the
noise  variance  for  most  practical  cases,  e.g.,  under  non-iid
noise. Under this assumption, a Hadamard ratio can be derived
from the GLRT which is given by,

T hadamard=
|R|

∏
k=1

M

[ R ]k ,k
(6)

where |.| refers to the determinant and [ R ]k ,kto the (k, k) th 

element of the sample covariance matrix R .

IV.  UNSUPERVISED DETECTION

A general  overview of the  examined ULSS detector  is
depicted in Fig 1, where it can be observed that it is comprised
of two main components during a training stage, i.e., GMM &
expectation maximization (EM) algorithms, as well as a DNN.

Fig. 1 Block diagram of the evaluated ULSS detector.
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                                  (a) PlutoSDR board used for the experimental evaluation.   (b) Encoder and modulator to transmit television signals.
                                                                                      Fig. 2  Hardware employed for spectrum sensing  

A. GMM/EM algorithms
The input vector to the ULSS detector is composed by the

extracted  eigenvalues  of  the  sample  covariance  matrix,  i.e.,

λ=[ λ1 , λ2 ,…, λM , ]
T
, which is collected under  H0and  H1

assumptions during the training stage. Let us consider that the
probability  density  function  (PDF)  of  the  eigenvalues
asymptotically follows a Gaussian distribution [18],  [12], so
that  an  eigenvalue  vector  follows  a  mixture  of  Gaussian
distribution1. 

Based on this observation, we resort to an unsupervised
clustering algorithm to determine the corresponding PU states.
A Gaussian Mixture Model (GMM) assumes that the sample
data  is  drawn  from  a  mixture  of  multivariate  Gaussian
distribution as follows,

f (⋋∨θGMM )=∑
k=1

K

τk ϕ (⋋∨μk , Σk ) (7)

where  θGMM= {τ k , μk ,Σk } denotes  the  parameters  defining

the  mixture  of  K  Gaussian  densities
ϕ (⋋∨μk ,Σ k) withk={1,… ,K }, τk is  the  mixing

coefficient  satisfying  Σk τ k=1,while  μkand  Σkdenotes  the
mean and covariance matrix of the Gaussian densities. Given a
set of collected eigenvalue vectors  S⋋ ,an EM algorithm [19]

is employed to estimate θGMM , thus the clusters are identified.
The membership of the eigenvalue vectors to these clusters is
assigned by considering the distance between them in order to
get their corresponding labels.

B. DNN
The input to the DNN is given by  ⋋∈RM×1, and it is

composed  of  N L hidden  layers.  Each  layer  contains  Qı

neurons with ı={1,2,…,N L }, and the output vector at the ıth
layer can be expressed as, 

1 It is worth to highlight that for a finite number 

of samples N s, the PDF is very complex and not suitable for a simple 

mixture model. However it will be shown later, that under a Gaussian 
assumption, frequently used in literature, leads us to meaningful results.

                          o l=f l (W l il+bl )                            (8)

where f lis a non-linear function, Wl ∈ RQl ×Ql−1  is a matrix
of weights, il ∈ RQl−1   is the input vector, and b l ∈ RQl  is
the bias vector. Note that the input vector ilcorresponds to the
output of the previous layer, i.e. il= o l−1. The evaluated DNN
architecture is composed of fully connected (FC) layers,  and
the output is obtained after applying a  softmax function. The
DNN is defined by its parameters denoted by θDNN = {W, B},
where W is a set of weight matrices {W1, W2, ..., WNL}, and B
is  a  set  of  bias  vectors  {b1,  b2,  ...,  bNL}.  Then,  during  the
training stage,  a  learning process  aims to  minimizing a  loss
function in order to estimate θDNN as follows,

L(θDNN) = arg min(oP  − oT ),                  (9)

θDNN

where  oP  denotes  the  predicted  outputs,  and  oTthe  true
outputs obtained during the clustering process. Finally, once
the DNN is trained, its detection performance is evaluated.

V.  SDR PLATFORM DESCRIPTION

The SDR platform is composed of an ADALM-PLUTO
active learning module (PlutoSDR as seen in Fig. 2a)[20]. It
supports a radio frequency (RF) range between 325 MHz to
3.8  GHz,  and  up  to  a  20  MHz of  instantaneous  bandwith.
Furthermore,  it  incorporates  independent  transmitter  and
receiver  channels  to  support  a  full-duplex  mode.  In  our
platform, the PlutoSDR is connected via USB to a personal
computer (PC) working on Linux Ubuntu 18.04 and running
GNU Radio [21].  In  addition, an encoder/modulator  is  also
employed to generate a digital television signal following the
integrated services digital broadcasting - terrestrial (ISDB-T)
standard. 

In  order  to  emulate  a  CR  scenario,  the  SDR  board  is
configured to operate in a full-duplex mode. In this way, the
transmitted and received channels allow us to emulate a PU
and a SU, respectively.  During a transmission, the in-phase
and quadrature (IQ) samples to be transmitted are sent through
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                                          Fig. 3  GNU radio companion (GRC) design for the transmission and reception of signals using PlutoSDR. 

the USB controller to the PlutoSDR. Then, these samples go
through a digital-to-analog converter (DAC), after which they
are  upconverted  to  RF.  At  the  receiver  side,  the  same
processing  chain  is  repeated  in  reverse  order.  It  starts  by
down-converting the receiver  RF signal, then the IQ analog
signals  are  subsequently  digitized  by  an  analog-to-digital
converter (ADC), so that the samples can be retrieved at the
host computer using the USB controller.

A GNU Radio Companion (GRC) design that implements this
setup is depicted in Fig. 3, where the transmitter and receiver
channels  have  been  highlighted  in  red  boxes.  It  allows  to
upload files containing the IQ samples for the transmissions,
while saving in files the measurements of the receiver channel.
This setup facilitates the experimental evaluations enabling the
simultaneous  transmission  and  reception  of  signals,  thus
avoiding  the  introduction  of  synchronization  mechanisms.
Moreover,  it  allows  to  control  the  PU and  SU from a  PC
running  a  single  application.  Finally,  the  collected
measurements will allow us to apply an off-line processing.

VI.  EXPERIMENTAL RESULTS

In this section, we evaluate the ULSS detector using the
aforementioned SDR platform. The experiments are conducted
under a stationary environment, and the experimental results
are obtained with 1000 Monte-Carlo trials for each realization.
In our CR scenario, the PU transmits an orthogonal frequency
division multiplexing (OFDM) waveform conveying 16 QAM
symbols and employing a carrier frequency of 3.4 GHz. The
control  of  the  signal-to-noise  ratio  (SNR) is  carried  out  by
modifying the power transmission of the PU, while  the SU
establishes  a  number  of  samples  Ns=50  per  each  sensing
period. 

ULSS training
In  Fig.  4,  a  scatter  plot  of  the  λ  eigenvalue  vectors

obtained for a measured SNR of 0.24 dB is shown. It can be
appreciated that two clusters of vectors corresponding to the
PU states (H0 and  H1) can be identified, and the variance of
each  cluster  determines the shape of the distribution, where
some  outliers  are  also  taken  into  account.  Based  on  these
measurements, a GMM allows us to estimate the parameters θ
corresponding to these clusters. 

Fig. 4:  Eigenvalues  extracted  from the covariance  matrices obtained under a
null and alternative hypotheses,  H0   and H1, for a measured SNR = 0.24 dB
on average.
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Fig. 5: ROCs curves corresponding to the NP and ULSS detectors for an SNR

= −3.4 dB and SNR = −5.8 dB.

In doing so, it was observed that for a higher measured SNR,
the clusters are well defined and separated, and consequently
the  obtained  labeled  data  are  often  correct.  Nevertheless,  a
trained DNN with this set of data provides poor results when
tested for lower SNRs. 

On the other hand, if the clusters are not well defined, it
will not only be hard for the clustering process, but also it will
introduce mislabeled data degrading the DNN performance as
it  learns  from  these  errors.  This  problem  is  overcome  by
collecting measurements around or above an SNR of 0 dB. It
allows the DNN to work for both, higher and lower SNR, and
we select  the  data  training  shown in  Fig.  4  for  the  current
experimental evaluation. Regarding the DNN, it is trained for
two architectures, a DNN1 containing a single FC layer, NL =
1, with Q1=16 neurons, and another one DNN2 with two FC

layers, NL = 2, each of them containing Q1=16 and Q2=16
neurons, respectively. 

Performance evaluation
The performance of the detectors is studied by comparing

their receiving operating characteristic (ROC) curves. In Fig.
5, we show the obtained performance of the ULSS detector
when  employing  the  aforementioned  DNN  architectures.  It
was observed that a DNN2 provides a better accuracy over a
DNN1  and  without  causing  overfitting.  Furthermore,  the
ULSS  attains  a  close  performance  to  that  exhibited  by  a
Newman-Pearson (NP) detector for a measured SNR of −3.4
dB, while a slightly degradation is shown for an SNR of −5.8
dB. 

The  detection  performance  of  based-model  detectors
against  the  unsupervised  detection  is  also  compared  taking
into account a DNN2. In Fig. 6, it can be appreciated that the

Fig. 6: ROC curves for the T AGM, T hadamardand ULSS dectectors, for

SNRs = −3.4 dB and −5.8 dB.

 T AGM detector is severely degraded for an SNR of −3.4
dB,  which  can  be  explained  because  it  is  deduced  from  a
GLRT in which the noise is assumed to be iid. A  T hadamard

detector is also compared for an SNR of −5.8 dB. Although it
is more robust against uncertainties in the noise variance, one
of the key advantages of learning-based detector is that it can
adapt  to  the  actual  data  distribution,  thus  obtaining  better
results.

In Table I, the obtained detection gain of the ULSS detector
over the model-based detection is reported for a PFA = 0.1 and
PFA =  0.01.  It  can  be  observed  that  ULSS  provides  a
significant gain for an SNR = -3.4 dB, while for an SNR = -
5.8  dB the  gain  decreases.  Note  that  the  training  data  was
collected around an SNR of 0 dB, thus suggesting us to further
improve the training stage.  
  

Table I: Detection gain
ULSS detection gain over 
model-based detection

SNR = -3.4dB SNR = -5.8dB

PFA = 0.1   42.4% 5.8%

PFA = 0.01 14% 0%

 

Moreover,  an  ISDB-T  signal  is  evaluated  using  the  ULSS
detector, where it can be observed that for an SNR of −2.4 dB,
it  reaches a PD ≥ 0.9 with a PFA = 0.1 without resorting to
labeled data.

Finally,  the  complexity in  terms of  real  multiplications and
sums for the  T AGM and  T hadamard requires at least one sum
and one multiplication2., while the number of multiplications

2 Note that other operations such as the square root or the division have 
not been considered.
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and  sums  for  a  DNN  can  be  computed  as

Cmult / sums=∑
l=1

N L+1

Ql−1Ql,  where  Q0 and QNL+1 correspond

to the sizes  of the input and output vectors.   Then,  for  the
DNN2 with  Q1 = 16 and  Q2 =2 neurons,  Cmult / sums is equal
to 2x16+16x2+2x2 = 68. Thus, a total of 68 multiplications
and 68 sums are required.  

VII. CONCLUSIONS

In this paper, we have evaluated the performance of two
model-based detectors and an unsupervised learning detector
through  experimental  evaluations.  A  practical  setup  for  an
SDR platform is  presented  for  experimental  measurements.
The  study  shows  that  the  unsupervised  detection  obtains  a
significant  gain in  comparison to GLRT detectors  based on
assumptions  concerning  the  noise  distribution.  Ultimately,
these  preliminary  results  confirm  the  feasibility  of  ULSS
approaches  for  learning  and  adapting  to  the  observed  data
distribution under a more realistic environment, suggesting us
the development of novel unsupervised approaches exploiting
relevant features of a PU signal.
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